0 0 0
Dieser Online-Shop verwendet Cookies für ein optimales Einkaufserlebnis. Dabei werden beispielsweise die Session-Informationen oder die Spracheinstellung auf Ihrem Rechner gespeichert. Ohne Cookies ist der Funktionsumfang des Online-Shops eingeschränkt. Sind Sie damit nicht einverstanden, klicken Sie bitte hier.

Cohen, Chauhan Artificial Intelligence in Pathology

Principles and Applications

ISBN: 978-0-323-95359-7

Auflage: 2nd Ed.

Erscheinungsdatum: November 2024

Einband: Softcover

Seitenzahl: 500 p.

Verlag: Elsevier

Gewicht: 2 kg
Lieferzeit ab Ihrer Bestellung: 2-14 Tage je nach Lieferbarkeit und Verlag

Beschreibung

Artificial Intelligence in Pathology: Principles and Applications provides a strong foundation of core artificial intelligence principles and their applications in the field of digital pathology. This is a reference of current and emerging use of AI in digital pathology as well as the emerging utility of quantum artificial intelligence and neuromorphic computing in digital pathology. It is a must-have educational resource for lay public, researchers, academicians, practitioners, policymakers, key administrators, and vendors to stay current with the shifting landscapes within the emerging field of digital pathology. It is also of use to workers in other diagnostic imaging areas such as radiology.

This resource covers various aspects of the use of AI in pathology, including but not limited to the basic principles, advanced applications, challenges in the development, deployment, adoption, and scalability of AI-based models in pathology, the innumerous benefits of applying and integrating AI in the practice of pathology, ethical considerations for the safe adoption and deployment of AI in pathology.

  • Discusses the evolution of machine learning in the field to provide a foundational background
  • Addresses challenges in the development, deployment and regulation of AI in anatomic pathology
  • Includes information on generative deep learning in digital pathology workflows
  • Provides current tools and future perspectives